Development of simplified discrete limit analysis for three-dimensional slope
stability problem

Advantechnology Co.,Ltd.
Eisaku HAMASAKI

Department of Art and Technology, Hosei Univ.,Japan.
Norio TAKEUCHI

Department of Urban and Environmental Engineering, Kyoto Univ.,Japan.
Yuzo OHNISHI

Abstract

In this study, a new simplified discrete limit analysis technique for a
three-dimensional slope stability problem is proposed, using divided columns which are
three-dimensional elements of RBSM (Rigid Body Spring Model). This approach is easy
to use such as the slice method currently used in the conventional slope stability
analysis and it helps to develop a very effective slope protection work plan taking into
account displacement of each column. In this model, a sliding surface consists of squares,
since a column is square. Then, the concept of the isoparametric element is introduced
to define this surface. Using this model to analyze a three-dimensional slope stability
problem, we showed that the safety factor of a landslide is calculated, and it can predict
a movement of the whole body of the slope from combination of displacement direction

of each column.
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1. Introduction

The mainstream of the slope stability analysis for landslides has been the
two-dimensional limit equilibrium method, but in the wake of recent advances in
computers, the three-dimensional limit equilibrium method, the advanced finite
element analysis method, etc. have also been used. However, the three-dimensional
finite element analysis requires expertise in setting boundary conditions, specifying
physical properties, and it is difficult to interpret results in many cases, so the use of
such method is still limited to special cases, when consider the costs and time for
analysis.

When we review the recent improvements in the analytical ability of computers, it
is certain that the three-dimensional stability analysis of landslides at the level of the
limit equilibrium method is not a special analysis but it is now quite common V. In
addition, at many landslide sites, the geological and topographical conditions have
strong influences; for example, the process of forming the slip surface having slickenside
was seen at smectite, etc. which was produced at specific areas such as faults, the
weathered and altered parts, and the pelitic parts. Namely, it is important for on-site
engineers to identify the locations of slip surfaces by investigating the history of the
changes in topography, geological characteristics, and landslides. The frequency of
utilizing the three-dimensional limit equilibrium method-based slope analysis that
assumes that slip surfaces are known 1s still quite high, compared with
three-dimensional numerical analyses, such as the finite element method.

Meanwhile, when an engineer performs three-dimensional stable analysis of a
slope, they adopt Hovland's method, which is extension model of two-dimensional
Fellenius' method. Hovland’s method assumes that the inter-column forces are zero, like
the two-dimensional Fellenius’ method assumes that the reluctant of the internal forces
acting on the slice side is parallel with the slip surface (it is ignored, in a strict sense).
Therefore, as pointed out by Ugai® and Enokida et al. 4, Hovland’s method difficult to
take into account three-dimensional geometric effects such as lateral constraint.

In order to consider- three-dimensional geometric effects, Ugai et al. expanded the
two-dimensional Janbu’s method, Bishop’s method, or Spencer’s method to the
three-dimensional one and assumed that there is a reluctant of internal forces acting on
the lateral side of column in the direction toward the point of action, to propose an
analysis method, etc. 9.

However, their a method also needs to make assumptions regarding the point of
action of and the direction of the reluctant between lateral sides of column, and in the

case of three dimensions, a movement direction is set in only one direction on the



horizontal plane to obtain the safety factor. If the movement direction is not determined,
it is necessary to obtain the safety factor of the slope by calculating the safety factor for
each possible movement direction and seeking the direction of the minimum safety
factor 9.

However, when seeing the displacement directions of observation posts and GPS
devices traced in most landslide sites, for example, the landslide in Washiodake ©, it was
often observed that the moving body in a landslide does not move only in one direction.
On the other hand, the limit equilibrium model assumes that the hypothetical slide
directions of the entire slope are in one direction, to calculate the safety factor, and so
there is not a little gap with actual conditions.

In order to solve such problems, the authors adopted the RBSM (Rigid
Body-Spring Model), which obtains a discretization equation using the energy stored
between elements ?. RBSM has been developed as a computational model generalizing
limit analysis in plasticity. In this model structures or solids are idealized as a set of
rigid elements interconnected by two types of spring systems, one of which resists the
dilatational deformation, the other, the shearing deformation.Thus, RBSM is so useful
for fracture analysis of rock or concrete cracking, which can be regarded as a
well-known discrete crack model.

According to this method, by introducing lateral springs that applied the penalty
function between the lateral sides of columns, which underwent mesh division on the
horizontal plane, it becomes possible to produce a mechanism in which force is
transmitted with the displacement of columns, and then it is possible to calculate the
safety factor of the slope from the surface force on the slip surface®.

The input data used in this method are the same as those for the conventional
limit equilibrium method, that is, the unit weight ( » ?), the cohesion (C), and the
internal friction angle ( ¢) of the moving body, and pore water pressure (U). Namely, it
becomes possible to obtain the displacement of each column with easy condition-setting,
and also to clearly reflect the three-dimensional geometrical effects, especially the
lateral constraint condition.

This paper describes the theory and formulation of this method, and with simple
model analysis, we show that these three-dimensional stable analysis can consider a
restriction effect of landslide's side. And, according to this method, the configuration of a
landslide's slip surface is consists of quadrangular, so, we propose a technique of

modeling with isoparametric elements.
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2. Introduction of the Discrete Limit Analysis
2.1 Modeling based on RBSM

In slice methods such as the Hovland’s method, the three-dimensional slope is
represented by the aggregate of columns (square poles) standing on the XY plane, as
illustrated in Fig. 2, and the safety factor of each column on the sliding surface is
calculated by the limit equilibrium method.

When a discrete limit analysis is conducted under the assumption that these
columns are three-dimensional elements of RBSM, the surface force on the sliding
surface can be calculated, and the safety factor is calculated from this. The objective of
this study is to carry out an analysis easily like a slice method, and a column is defined
as an element in RBSM, and the degree of freedom is 3 directions —x, y, and z — to be
shown in Fig. 3.

When we cannot constitute slip surface in a quadrangle, in this study, we treat it
as the calculation outside. Although generally RBSM considers rotational degree of
freedom, this study ignores the deformation of columns and treats the translational

movement only, and so rotational displacement is not considered to easily think.

2.2 Formulation for Simplifying Analysis of three-dimensional slope stability problem
(1) Lateral sides of columns

In this study, columuns are made in the same way as a conventional division
method, so, a calculation of stiffness matrix by RBSM is extremely simplified.

Fig. 4 shows the adjacent element relationship between the x-direction. In this
case, the relative displacement on the contact surface A can be calculated with the

following equations:
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Here, u represents the displacement vector, and u, v, w depict the displacement
components in the x, y, and z directions, respectively. The suffixes I and IIcorrespond
to the columns shown in Fig. 4.
On, Osx, and sy represent the relative displacements in the normal direction, and
the y and z directions, which are perpendicular to the normal direction on the contact

surface, respectively, as shown in Equation (1).



In a similar way, the relative displacement ¢ for the adjacent element in the y

direction as shown in Fig. 5 can be calculated with the following equation:
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On the other hand, the surface force o between columns at lateral sides is obtained

} (3)

Here, o, represents the surface force in the vertical direction per unit area on the

using the penalty function as follows:
o = Dsideé‘
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column’s lateral side, and zsc and zsy depict the surface force in the shear directions.
Therefore, the energy stored on the columns at lateral side can be calculated by

conducting integration on the contact surface A as follows:
Vsize=0.5- UTJ. A Bj Diside BdiM'FOSZ/I TJ. AB: Diside By dAu (4)

(2) Sliding Surface
As shown in Fig. 6, it is assumed that the sliding surface is given by the following
equation:
z=2z(x,y) ()

At this time, the normal vector can be expressed by the following equation:
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The tangent vectors Sy and Sy in the x and y directions can be calculated in a

similar way as follows:

Se=1{i+(0:/0:)k}/\[1+(0:/0:) -
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Here, the displacement vector u of the column can be expressed by the following
equation with the unit vectors in the x, y, and z directions—i, j, and k.

u=ui+vj+owk (8)
At this time, the relative displacement dp, dsx, and sy on the sliding surface can be

calculated as follows under the assumption that there is no movement of the bedrock.
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Consequently, the following relation can be obtained.
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When the relation between the relative displacement and surface force on the sliding

surface 1s expressed as follows:
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the energy on the sliding surface (contact surface A) can be estimated with the following

equation:
Vap=05-u’ [, B" DB dAu (12)

Here, D represents the matrix of the spring of the penalty (2).
Therefore, the energy of the entire system becomes as follows:
V = Viide + Vitip 13)
By deriving a discrete equation from this relation, it becomes possible to conduct a

three-dimensional discrete analysis based on RBSM.

2.3 Gradient of the Sliding Surface

As mentioned in the previous section, the equation representing the sliding
surface: z = z (x, y) is defined using bilinear isoparametric quadrangle elements, and
then the gradient of the sliding is calculated 9. Fig. 7 shows one example of the shape
function of this element, and there is the following relation between the natural

coordinate system and the physical coordinate system.

x(f,n)= ii:lNa(é,l’])Xa , y(é,n): i_lNa(é,I’l) o (14)

Here, Na represents the shape function. Since ais the quadrangle element, ais equal to
1 to 4. As for isoparametric elements, physical quantities are interpolated using the
same shape function as coordinate transformation. Here, the z-coordinate is considered

as the physical quantity, and an area is defined with the following equation:



z(x,y)=z(x(&n), y(&n) )= élNoc(f, Nz (9

At this time, the gradient of the sliding surface can be expressed by the following

equation:
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Here, J represents a Jacobian matrix. By substituting Equations (14)-(16) into Equation
(7), it is possible to calculate the normal vector and gradient of the rectangular surface
(Fig. 8). Therefore, the gradient of the sliding can be obtained for each integration point
by means of numerical integration.
In this study, an integration point is set at a central point, and the gradient at this
central point is defined as the gradient of the sliding surface. In the natural coordinate

system, the central point becomes ( £, 7) = (0, 0), and equal to the normal vector that is

derived from the midpoint vectors in the x and y directions on the rectangular area.

2.4 Weight and Head Height of the Column

By defining the intersection of the two lines that are drawn by connecting the
weight and head height of the column, and the central point of the column’s bottom on
the x-y plane, that is, the midpoint of the diagonal line, as the representative point, the
average of the height components is calculated.

Therefore, as for a square pole, the following equations are used as shown in
Fig. 9.

e Altitude of the column’s ground level (H¢)
Ht=(Zti+ Zt2+ Zt3+ Zts) /4 amn

e Altitude of the column’s groundwater level (Hw)
Hw=(Zwi+ Zw2+ Zws+ Zws) /4 (18)

e Altitude of the column’s sliding surface (Hb)
Hb=(Zbi+ Zb2+ Zbs+ Zbs),/ 4 (19)

e Column’s weight (W)
Assuming that the unit weight is( 9,

W = AX - AY - At(Ht — Hb) (20)

e Head height of the column’s center (U)



U=Hw-Hb (21)

In this method, when adding the weight term to water pressure including pore
water pressure, the body force acts on the sliding surface and the column’s lateral side
in the perpendicular direction to each surface at the head height. Accordingly, the
surface force on the sliding surface is the outcome after summing up all acting forces

including the pore water pressure.

2.5 Entire Safety Factor
When RBSM-based discrete analysis is conducted, the normal force (V) and
tangent forces (Tx, Ty) on the sliding surface of each column is obtained. In this analysis,

the safety factor is calculated from these surface forces with the following equation:

Fs=Y{ang N+C -A}/\/(ZTX)2+(ZTy)2 (99)
-R/D

Here, ¢ represents the internal friction angle of the sliding surface, C represents the
cohesion, and A depicts the area of the sliding surface. In addition, the numerator R
represents the shear strength resisting the sliding, and the denominator D depicts the

reluctant of the shear strengths on the sliding surface.

3. Sensitivity Analysis of Lateral Constraint Pressure and Landslide Configuration
Ratio

In this section, the effects of constraint pressure are clarified utilizing this method.
With regard to the landslide configuration and the safety factor, a model is developed
based on the relation between width (w) and thickness (d) (which is the ratio of “w/d”
here) and an analysis is attempted. For comparison, the simplified three-dimensional

Janbu’s and Hovland’s methods are also used for analysis.

3.1 Analysis Conditions

As analysis conditions, the two three-dimensional models (a) and (b) shown in Figs.
10 and 11 were prepared. In addition, Fig. 12 shows the cross sections of the models.
Model (a) has a steep crest and a gentle foot like an ordinary landslide, not only its
lateral sides, while Model (b) has a homogeneous slope that does not show any change in
gradient from its crest to foot. Such a setting was conducted with the purpose of
describing clearly the lateral constraint. Here, it was assumed that the gradient of the
homogeneous slope is tan&= 0.3 (6=16.7° ), and Cases 1 to 5 in Table 1 were analyzed.

In addition, in order to discuss the difference in the internal friction angle ¢, ¢=



20° and ¢=10° were assumed in Cases 1 and 2, respectively, where the same analysis
model was used for Cases 1 and 2. Moreover, the three models of landslide thickness of
12 m, 27 m, and 54 m were used for Cases 1, 3, and 4, respectively for the sensitivity
analysis with respect to the landslide thickness (d).

In Cases 1, 2, and 5, it was assumed that the grid widths “dx” and “dy” are both
2.5 m, and in Case 3, the grid width was 5.0 m, and in Case 4, it was 10.0 m. The “W2” of
the bottom surface of the sliding surface shown in Fig. 12 was calculated with the
equation: W2 = W—2 - dx. Moreover, to directly grasp the constraint condition of this
method, the work of the column located at (i, j) = (29, 22), in the right side of the center
of landslide of Model (b), Case 5, per m? in the x direction, was calculated by multiplying
the displacement of the column in the x direction and the surface force in the x direction
(Fig. 13). Here, i and j represent the column numbers in the x and y directions,

respectively.

3.2 Analysis Results

In Fig. 14, the results of each case are plotted with the vertical axis being the
safety factor (Fs) and the horizontal axis being the w/d ratio, where “RBSM” represents
the safety factor obtained in the simplified three-dimensional safety analysis model,

“Janbu” represents the safety factor in the simplified three-dimensional Janbu’s method,

and “Hovland” depicts the safety factor in Hovland’s method. In addition, Fig. 15 shows

the relation between the safety factor of RBSM of Case 5 of Model (b) and the work of
the column near the center of the landslide region (i= 29, j= 22) in the x direction. From
the above analysis results, the following characteristics were found:

(1) RBSM and Janbu decrease exponentially as the w/d ratio increases. When the
wy/ d ratio is small, RBSM is higher than Janbu. However, when w/d is 2 or larger,
the decrease behaviors of both are almost the same. On the other hand, Hovland
does not depend on w/d and is nearly constant, excluding Cases 2 and 3, but in
Cases 2 and 3, the rate of change of Hovland is small compared with Janbu and
RBSM.

(2) In Model (b), which has no effects of edge configurations such as foot and crest,
there are no differences in safety factor between this method and the simplified
three-dimensional Janbu’s method. On the other hand, in Model (a), the safety
factor in this method tends to be higher (constraint effect is stronger) than that in
the simplified three-dimensional Janbu’s method.

(3) From the comparison between Cases 1 and 2, it was found that RBSM and Janbu

become higher as ¢ increases and they decrease in the same way as the w/d ratio



increase. When Cases 1, 3, and 4, whose ¢ are the same and whose d are different
from one another, are compared, the change in safety factor at a small w/d becomes
smaller as d is thicker, but there are no significant differences among Cases, and
w/d = T7-10, and the safety factor is constant.

(4) In Model (a), when the w/d ratio exceeds 7-10, Hovland and Janbu become almost
the same. In addition, in Model (b), Janbu and RBSM are nearly equal to each
other.

3.3 Discussion of Constraint Condition Analysis

With regard to discussions on the configuration, scale, and stability of landslides,
there is an old report by Watari et al. 19, and Ueno also focused on the relation between
the landslide’s maximum width (W) and the depth of the sliding surface (D) at a
landslide site he investigated, calculated the cross dimensional ratio “W/D’ with a
simplified equation, demonstrated that the safety factor becomes almost constant when
W/D is 10 or larger, and provided a logical explanation for the result that W/D =
3.0-10.7, which was obtained at the site he studied 1V.

Also in the analysis of this study, RBSM and Janbu become constant suddenly
when the w/d ratio exceeds 7-10. In addition, the fact that the work in the x direction,
which is shown in Fig. 15, becomes almost zero when the w/d ratio exceeds 11
demonstrates that the same configuration effects as the w/d ratio of Ueno et al. work.
The reason why RBSM is slightly higher than Janbu in Model (a) while they are equal
in Model (b) is considered to be that the configuration of the changing points of the
sliding surface gradient in the vertical direction causes considerable constraint effects
in the analysis of RBSM. In addition, from the comparison between Cases 1 and 2, it can
be said that the lateral constraint effect is not considerably large when seeing the w/d
ratio.

Although Hovland changes slightly when the w/d ratio of Cases 2 and 3 in Fig. 14
1s 3 or lower, Hovland does not change in Case 5. This is because the gradient of the
sliding surface is not homogeneous but twisted at the columns of both edges of the
landslide and the gradient becomes gentler at the edges. Therefore, the analysis result
of Hovland became as if there were the constraint effects.

Anyway, it was found that this analysis, in which the limit discretization method
of RBSM is used, considers the effects of the landslide configuration to a sufficient
degree, and that this method shows larger vertical constraints and a higher safety

factor than Janbu’s method.
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4. Analysis Cases

As mentioned in the previous section, it is a fact that the landslide movement
direction varies on the surface of the moving body, according to the observation of
moving pegs.

In the reports of Kishita ® and Rou 12, the landslide of Washio-dake shown in Fig.
1 shows the three-dimensional topology and sliding surface, and so the stability
analysis with this method was attempted based on them. The location of groundwater
was estimated three-dimensionally based on the high water 12 and the flow distribution
map ©. In addition, considering that there exists basalt above an altitude of 210 m, the
landslide moving body has a two-layered structure: layers of basalt and of other
substances. Then, it was assumed that the unit weight of the soil mass of the former (r?)
is 27 kN/m3 and that of the latter is 26 kN/m3. With regard to cohesion (C) and internal
friction angle (¢), it was assumed that C = 16.4 kPa and ¢= 21.7° , which are the
results of the ring shear test, in Case 1, and that C = 16.4 kPa and ¢= 11.35" , from
which Fs = 1.0 is obtained via the back calculation with this method (RBSM), in Case 2.

The Hovland’s method and the simplified three-dimensional Janbu’s method were
compared in safety factor. The direction of the minimum safety factor in each method
was defined as the clockwise angle from the downward y axis. The results are shown in
Table 2. As for Case 2 based on this method, the direction of the column’s movement
(solid line) and the maximum gradient of the column (dashed line) are shown in Fig. 16.

Table 2 states that the safety factor obtained in the present method indicates the
highest value like the sensitivity analysis mentioned previously. However, in the
previous section, Janbu becomes almost equal to Hovland as the w/d ratio becomes
higher, but according to research records, the safety factor obtained in the simplified
three-dimensional Janbu’s method is higher. This is endorsed by the study of the
collapse of Ontake by Ugai 3 in which the safety factor in the simplified
three-dimensional Janbu’s method is higher than that in Hovland’s method. In the
present analysis (RBSM), the safety factor becomes further higher than that in the
simplified three-dimensional Janbu’s method. This is considered to be because the
present analysis considers not only the lateral sides but also the vertical direction in
discussing the displacement due to the three-dimensional configuration effects. In
addition, when comparing the direction of the column’s movement shown in Fig. 16 and
the moving pegs shown in Fig. 1, it is found that although there are some differences in
the movement direction at the east edge and central part of the head part of the
landslide, the movement directions from the western edge to the end of the landslide

and Peg No. 11 are the same.

-11-



5. Conclusion

The proposed method is based on the discretization limit analysis method similar

to RBSM, and differs from the conventional Hovland’s method and simplified

three-dimensional Janbu’s method. A good point of this method is gathered to four

following items.

1)

2)

3)

4)

With this method, it is possible to obtain a safety factor taking into account
each column’s displacement.
In addition, the three-dimensional configuration effects could not be described
by Hovland’s method, but the present method induces the lateral constraint
like the simplified three-dimensional Janbu’s method and higher constraints in
the direction of the sliding surface than the simplified three-dimensional
Janbu’s method. And therefore the safety factor becomes higher as a whole.
Anyway, the present analysis method can conduct comparison with the
movement directions, according to the analysis of the case of the landslide at
Washio-dake, and it can be found from such data that the present method is
one of the clues to judging the stability of the sliding surface structure.

And, this method is almost the same as the conventional limit equilibrium
method in necessary parameters, assumed landslide structures, and analysis

time, and so the easiness in carrying out analysis is retained.
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Fig. 2 3-dimensional discretization of sliding body by using columns
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Fig. 8 An example of shape function
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Fig. 9 Coordinate to calculate weight of a column and water head
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Table 1 Parameters used

in calculation models

Case  Model o Oé A 5 - L1 L2 L3 d tanf1 tanf2
kPa kN/m m m m m m
1 a 10 20 18 20- 130 40 50 10 12 0.3 1.5
2 a 10 1U 15 20 - 150 40 [510] 1U 12 U.3 1.0
3 a 10 20 18 20- 190 90 100 11.25 27 0.3 1.5
4 a 10 20 18 40 - 520 180 210 45 54 0.3 1.5
5 b 10 20 18 30- 120 12.5 75 25 20 0.3 1.9
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Fig. 13 Unit work of a column in X-direction
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Table 2 Comparison for safety factors and movement directions between RBSM,

Janbu method and Hovland method at Washiodake area

§afety factor (Three dimensions method )

Case Condition

RBSM Janbu's method Hovland's method
@ C=16.40kPa, ¢=21.70° 1.88 1.66 ( 3° 1.53 ( 10°)
@ C=16.40kPa, ¢=11.35° 1.00 0.89 ( 39 0.83 ( 10°

% () is sliding direction of minimum safety factor.
And, 0°is North direction and proceeds around watch.
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Fig. 16 Comparison of calculated movement direction of column and maximum inclination

direction using by RBSM.






