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ABSTRACT: A large-scale high-speed landslide appeared on hilly area of Tsukidate-cho in the northern part
of Miyagi Prefecture in Japan, caused by Sanriku-minami earthquake on May 26, 2003. This landslide
movement was strongly controlled by the horizontal acceleration of this seismic, which exceeded 1,000 gal
by the place. The rapid landslide is often recognized on slopes in Japanese islands, situated in humid tectonic
zone, at the time of the strong earthquake. This study reconstructs this rapid landslide by using Discontinuous
Deformation Analysis (DDA), paid attention with the characteristics of landslide movement. DDA method is
well suited the rapid landslide.

1 INTRODUCTION
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Rapid type of landslide is also known to be often
occurred by earthquake in Japanese hilly slopes and
embankment slopes (e.g. Nishimura et al., 1969;
Tamura et al., 1978), however, the mode of the
movement on rapid landslide has not been examined
on a quantitative basis because observation of the
slide is difficult.
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Figure 1. Study site.

in Japan, caused by Sanriku-minami earthquake
(M7.0) on May 26, 2003. This landslide was rapidly
mass-movement  (The Japanese  Geotechnical
Society and Japan Society of Civil Engineers, 2003).

This study aims to reconstruct of the rapid
landslide by using Discontinuous Deformation
Analysis (DDA; Shi & Goodman, 1984) for the base
to clarify the mechanism of rapid landslide.

2 LANDSLIDE IN STUDY SITE

The epicenter of Sanriku-minami earthquake was
situated in off the coast of Miyagi Prefecture in
northeastern Japan (Fig. 1; 38.8° N, 141.8° E, 71
km depth). The magnitude of the earthquake was 7.0,
and maximum seismic intensity was 6 lower. A
maximum horizontal acceleration of the seismic
exceeded 1,000 gal at the place.



The landdide due to the earthquake appeared on
the hilly area of Tsukidate-cho, approx. 80 km from
the epicenter, in the northern part of Miyagi
Prefecture. The hilly area, landdide occurred, is less
than 60 m in altitude, where the pyroclastic materias
cover on the slops. The landslide took place in the
south-facing valley-shaped gentle slope where was
embanked by pyroclastic materials. The maximum
angle of the dope is about 10°, and the average
angle of it is 6-7°. Debris, caused by landslide,
moved downward along the valley-shaped gentle
dope, and it spread out like a fan in the
accumulation area.

The scale of the landslide was 180 m long, 27 m
height. The thickness of the debris in the
accumulation area was about 5 m (Fig. 2). The
average velocity of the debris-flow is estimated to be
1.2-1.8 m/sec., and the maximum of it is estimated
to reach 6-7 m/sec., by the eyewitness account (The
Japanese Geotechnical Society and Japan Society of
Civil Engineers, 2003). This larddlide is regarded as
a high-speed dide viewed from the relations the
veocity of the debris-flow and the dope angle.
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Figure 2. Cross section of landslide which occurred on May 26,
2003.

3 MODELING

3.1 Approach for reconstruction of the landslide

Two targets for the reconstruction of the landdlide
movement are shown in Table 1. One is the extent of
debris, especialy the position of debrisend, which is
confirmed by dlid debris surface morphology. The
other target is the velocity of landdide movement,
which is estimated by the eyewitness account on
landdide occurrence.

DDA simulation will be repeatedly carried out
with converting the parameters, when the DDA
results and the targets will be in agreement (Fig. 3).

Table 1. Targets for reconstruction of the landslide movement.

Average 1-2 m/sec.
Maximum 6-7 m/sec.

Velocity of landslide movement

Debris extent

(Position of debris end) 180 m from the Scarp
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Figure 3. Flow of the simulation.

3.2 Block Mode of the landdlide mass

In the case which the DDA modé is built up, model
of the landslide mass should be divided into smallest
blocks possible because observed debris due to slide
break into small fragments. The blocks are divided
into smaller ones, however, DDA solution is more
complex. Here, we try on two cases of the block
modd (Fig. 4)

a) Landslide mass divided into “large blocks™
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Figure 4. Block model of the landslide mass. Two types of
block model are prepared. Each block model is divided into
the three sections (upper, middle, and lower parts).



3.3 Parametersfor thelanddide

The parameters using in the smulation are shown in
Table 2. Unit weight of block, frictional angle, and
cohesion are decided onthe field data, obtained from
the dlope at shortly after the landslide occurrence.
Poisson ratio and coefficient of attenuation are
established from the empirical data of soil test.
Young's module of block is varied from 50 to 400
MPa

Table 2. Parameters for the landslide.

4 SIMULATION EXAMPLE

4.1 Case of the“ Large blocks’

The case of the “Small blocks’, the former landdide
mass moved downward with displacement itself.
The debris was widely extended between closely in
the scarp and the lower part of slope (Fig. 6), but it
did not reach the target point where is the distance
180 m from the scarp (Fig. 2). In addition, the
solution of DDA did not clear up when the value of
Young's module was less than 200 MPa and more

_ om , VA __ ihan 250 MPa (Table 3)
Analysis Displacement Allow Ratio 0.001
parameters Total Steps (maximum) 15000  Table 3. Results of simulations
Maximum Time Step (sec.) 0.1 Y oung's module Result
Block Unit Weight (KN/m®) 18.0
Young's Modules (M Pa) 50-400 (MPa) Position of debrisend Velocity
Poisson Ratio 0.35 Run
Slope Unit Weight (KN/m?) 18000.0 04 150 unsolved
(no displacement) Y oung's Modules (GPa) 1,000 gém 200 not reached not filled
Poisson Ratio 0.35 RuUn )
Coefficient of Attenuation 0.15 06 250 not reached ot filled
Discontinuity Frictional Angle (degree) 10 0R7un 300 unsolved
Cohesion (MPa) 0.01 RUN
Tensile Strength (M Pa) 0.0 08 400 unsolved
. . Start
3.4 Input of the horizontal acceleration of the
seismic A
The data, horizontal acceleration of seismic, is
obtained from the “F-Net” which is Broadband
Seismograph Network of National Research Institute End

for Earth Science and Disaster Prevention (NIED).
The observation station of the data nearby the
landdide site is located in Kesenrnuma (Fig.1;
38.97°N 141.53°E). The datais shown in Figure 5.
The methods and manner of input the data, which
iIs the horizontal acceleration of seismic, are
according to the report of Sasaki et a. (2004).
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Figure 5. Seismic Horizontal acceleration data of “F-Net” in
Kesen-numa observation station.

Figure 6. Result of the Run 05 in DDA (divided into the large
blocks).

The former landdide mass is divided into three
sections, upper, middle, and lower parts (Fig.4). The
maximum and average velocities of the dide in the
Run 05 were verified (Fig.7).
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Figure 7. Velocity of the landslide movement in the Run 05
(divided into the large blocks). 20th step is proper for about 63
sec. after earthquake occurring.



The maximum velocities of each section were 4.3
m/sec. (upper part), 3.7 m/sec. (lower part), and 2.7
m/sec. (middle part). The average speed of each
section was 1.6 m/sec. (lower part), 1.4 m/sec.

(middle part), and 1.4 m/sec. (upper part).

4.2 Caseof the” Small blocks’
The case of the “Small blocks’, the former lardslide

mass also moved downward with displacement itself.

The debris was widely extended between closely in
the scarp and the lower part of slope. Its end reached
the target point, at the time of about 64 seconds after
earthquake occurring (Fig. 8).
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Figure 8. Result of the DDA (dividedinto the small blocks).

The maximum and average velocities of the each
section were verified (Fig.9). The maximum
velocities of each section were 6.8 m/sec. (middle
part), 6.7 m/sec. (upper part), and 4.6 m/sec. (lower
part). The maximum velocity was recorded in step 1
to 2 (3.2 to 6.1 seconds after earthquake occurring)
regardless of the sections, and it was gradualy
attenuated the speed until the stop. The average
speed of each section was 2.1 m/sec. (middle part),
1.9 m/sec. (lower part), and 1.7 m/sec. (upper part).
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Figure 9. Velocity of the landslide movement (divided into the
small blocks). 20th step is proper for about @ sec. after
earthquake occurring.

In consequence, the value of Young's module of
block is decided as 70 MPa and Coefficient of

Penalty is 300,000. When the value of Young's
module was more than 70 MPa, velocity of the
landslide movement exceeds the targets of 1-2 m/sec.
in average and 6- 7 mysec. in maximum.

5 CONCLUTION

The case which is divided former landslide mass
into “Large blocks’, the results of smulation do not
reconstruct the landdide movement in the point
which the maximum velocity isslowly than real one.
Slope angle of 6-7° is seemed to determine the
attenuation on energy of movemen.

On the other hand, the case which is divided
former landdide mass into “Small blocks’, the
targets of smulation are filled with the result of
DDA. The simulation shows that the landslide
movement is reproduced very well (Figs. 8 & 9).

Discontinuous deformation analysis methods with
earthquake response model can be applied to
landdlide movement. The displacement process of
inner structure of the landslide mass is, however,
necessary to examine the block modd.
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Purpose and background of this study

The landslide is one of the mass—movement on slopes, called “Jisuberi”
in Japanese, generally continuous and gradual mass movement on slopes.
Rapid type of landslide is also known to be often occurred by earthquake
in Japanese hilly slopes and embankment slopes, however, the mode of
the movement on rapid landslide has not been examined on a quantitative
basis because observation of the slide is difficult.

A large—scale rapid landslide appeared on hilly area of Tsukidate—cho
in the northern part of Miyagi Prefecture in Japan, caused by Sanriku—

Fig.1 Study site

minami earthquake on May 26, 2003. This landslide movement was strongly ) The epicenter of Sgnrik.u—minami earthquake was situated

lled by the hoF - i 5 #hi . hich ded in of'Fothe coast gf Miyagi Prefecture in northeastern Japan
controlled by the horizontal acceleration o is seismic, which exceede (38.8° N, 141.8° E, 71 km depth). The magnitude of the
1,000 gal by the place. earthquake was 7.0, and maximum seismic intensity was 6

This study aimsto reconstruct this rapid tandstide by using Discontinuous lower. A maximum horizontal acceleration of this seismic

. . . . ) ; ded 1,000 gal by the pl
Deformation Analysis for the base to clarify the mechanism of rapid landslide. E)EF:: I:ndsllde dguae tg th: epaarfc:ﬁquake appeared on the hilly

areaﬂaf—'Fsuklda‘te-cho—approx—G&krrrfmm;H‘rvepfcenter

in the northern part of Miyagi Prefecture.

The hilly area, landslide occurred, is less than 60 m in altitude, where
the pyroclastic materials cover the slops. The landslide took place in
the south—facmg vaIIey—shaped gentle slope where was embanked by

and the average angle of it is 6-7°. Debrls caused by landslide,
__ _moved downward along the valley—shaped gentle slope, and it spread
out like a fan in the accumulation area.
The scale of the landslide was 180 m long, 27 m height. The thickness
of the debris in the accumulation area was about 5 m. The average
_ velocity of the debris—flow is estimated to be 1.2-1.8 m/sec., and the
. ' . . .. maximum of it is estimated to reach 6—7 m/sec., by the eyewitness
Fig.2 The landslide caused by Sanriku—minami : o F o - :
earthquake on May 26, 2003 account.' This Iandslld.e is regarded as a high—speed slide viewed from
the relations the velocity of the debris—flow and the slope angle.

4>{ Block divition of landslide masﬂ—>
reconfiguration [

I Parameter setting

Df: Debris due to landslide on May 26, 2003  Sc: Scarp SL: Slip surface reconfiguration |

Em: Embankment Sf: Ground surface of embankment before the landslide movement

Landslide
movement?

Al: Alluvium  BS1: Basement (alternations tuff & sandstone)  BS2: Pyroclastic flow deposit /

Fig.3 Cross section of the landslide

Input the Earthquake vibration
[

Landslide
movement?

No

Table 1. Targets for reconstruction of the landslide movement

Average 1-2 m/sec.
Maximum 6-7 m/sec. -

Velocity of landslide movement Comparison
DDA results &

targets

Debris extent
(Position of debris end) 180 m from the scarp

Two targets for the reconstruction of the landslide movement are shown in Table 1. . : .
One is the extent of debris, especially the position of debris end, which is confirmed Fig4 Flow of the simulation
by slid debris surface morphology. The other target is the velocity of landslide movement,

which is estimated by the eyewitness account on landslide occurrence.

DDA simulation will be repeatedly carried out with converting the parameters, when

the DDA results and the targets will be in agreement (Fig. 4).



Parameters using in the simulation

a) Landslide mass divided into “large blocks” _—
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Fig.5 Block model of the landslide mass

Table 2. Parameters for the landslide

Item Value

[TXTH

Analvsis Dsplacement Allow Ratwo

parameters Total Steps 1500000
Bl Time Step (sec il
£ 180
12's Mosdulbes i MPa)y 0

035

Block

1RO
1060

Shope
(o displacement ) Y oung fodules i(GFa)y
Poasson Ratso 033

Coellicient of Attenuation 0.15

Ihscontmuity Frictional Angle (degree) 1

Cohesion { MI*a) 0.1

Tensile Strength (MPa) i

Two types of block model are prepared.
The model of the landslide mass should be
divided into smallest blocks possible
because observed debris due to slide
break into small fragments (Fig.2&3).
However, when the blocks are divided into
smaller ones, DDA solution is more
complex.

Here, we try on two cases of the block
model (Fig. 5) to judge the validity of
cutting size and form of the blocks in
DDA. Each block model is divided into the
three sections (upper, middle, and lower
parts) .

The parameters using in the simulation are

shown in Table 2. Unit weight of block,
frictional angle, and cohesion are decided on
the field data, obtained from the slope at
shortly after the landslide occurrence.
Poisson ratio and coefficient of attenuation
are established from the empirical data of
soil test. Young's module of block is varied
from 50 to 400 MPa.

The data of horizontal acceleration of the

Results

Start

s

Table 3. Results of simulations
(Large blocks)

Young's module
(MPa)
Foun (11 0
Run (12 70/
Run 03 100/
Fun (4 1500
HRun (13 200/
Run (6 250
Run 07 34010
o (1% 400

Time: 0.00sec.

Result

Position of debris end [ Veloeity

unsolved

unsolved

Time: 63.15sec.

unsolved

unsolved

| nod filled
| not filled

nol reaced

Fig. 7 Result of the DDA
(Run05; the large blocks).

not reaced

unsolved

unsolved

In the case of the “Large blocks”, the former landslide mass moved downward
with displacement itself. The debris was widely extended between closely in the
scarp and the lower part of slope (Fig. 7), but it did not reach the target
point (the distance 180 m from the scarp; Fig. 2).

In addition, the solution of DDA did not clear up when the value of Young's
module was less than 200 MPa and more than 250 MPa (Table 3).

The maximum and average velocities of the
slide in the Run 05 were verified (Fig.8).

The maximum velocities of each section were
4.3 m/sec. (upper part), 3.7 m/sec. (lower part),
and 2.7 m/sec. (middle part).

The average speed of each section was 1.6 m/

sec. (lower part), 1.4 m/sec. (middle part), and 1.
Fig. 8 Velocity of the landslide 4 m/sec. (upper part).
movement in the Run 05 The maximum and average velocities of each
(divided into the large blocks). section were not consistent with the target.
20th step is proper for about 63
sec. after earthquake occurring.
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In the case of the “Small blocks”, the
former landslide mass also moved downward

“Time (sec.)

seismic, is obtained from the “F-Net” which
is Broadband Seismograph Network of NIED.
The observation station of the data nearby
the landslide site is located in Kesen-numa
(Fig.1; 38.97° N, 141.53° E).

F,jg.6 Se;,ismic Horizontal acceleration data of
F-Net  in Kesen-numa observation station.

Conclusion

@In the case which is divided former landslide mass into “Small blocks”, the
targets of simulation are filled with the result of DDA. The simulation shows
that the landslide movement is reproduced very well (Figs. 9 & 10).

@In the case which is divided former landslide mass into “Large blocks”, the
results of simulation could not reconstruct the landslide movement in the point
which the maximum velocity is slowly than real one. Slope angle of 6-7° is
seemed to determine the attenuation on energy of movement.

@®DDA methods with earthquake response model can be applied to landslide

movement.

End
Time: 64.04sec.

Fig. 9 Result of the DDA
(the small blocks).

Fig. 10 Velocity of the
landslide movement in the
“small blocks”

20th step is proper for about
64 sec. after earth—quake
occurring.

with displacement itself.

The debris was widely extended between
closely in the scarp and the lower part of
slope. Its end reached the target point, at the
time of about 64 seconds after earth—quake
occurring (Fig. 9).

The maximum velocities of each section were
6.8 m/sec. (middle part), 6.7 m/sec. (upper
part), and 4.6 m/sec. (lower part). The
maximum velocity was recorded in step 1 to 2
(3.2 to 6.1 seconds after earthquake occurring)
regardless of the sections, and it was gradually
attenuated the speed until the stop. The
average speed of each section was 2.1 m/sec.
(middle part), 1.9 m/sec. (lower part), and 1.7
m/sec. (upper part). In consequence, the value
of Young's module of block is decided as 70
MPa and Coefficient of Penalty is 300,000.
When the value of Young's module was more
than 70 MPa, velocity of the landslide
movement exceeds the targets of 1-2 m/sec.
in aver—age and 6—7 m/sec. in maximum.





